Given data:
* The total mass of an astronaut and equipment is,
![m=182.8\text{ kg}](https://img.qammunity.org/2023/formulas/physics/college/j4s7x38uezcv6g670vuxa973fllwa1g5kh.png)
* The force is given as,
![F=144.4\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/skrcdizv17k9hxix9fso3bsqdigtac0rhn.png)
* The time taken is,
![t=1.19\text{ s}](https://img.qammunity.org/2023/formulas/physics/college/satunifour1w1p5c4xuuekdf2t54zibqwe.png)
Solution:
According to the Newton's second law,
![F=ma](https://img.qammunity.org/2023/formulas/physics/high-school/f29csqfwijobd1j24f6y6vv1aba7x8qmg1.png)
where a is the acceleration of the body,
Substituting the known values,
![\begin{gathered} 144.4=182.8* a \\ a=(144.4)/(182.8) \\ a=0.7899ms^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/bbw86lsuidtlfqqe6dxbd1lhr74mp44e42.png)
By the kinematic equations,
![v-u=at](https://img.qammunity.org/2023/formulas/physics/college/xgfbo3uos6nejsb78rph76ueov80f2m7jc.png)
where u is the initial velocity and v is the final velocity,
Substituting the known values,
![\begin{gathered} v-0=0.7899*1.19 \\ v=0.94ms^(-1) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6rcgt34fz52iqc70kn0i11usy6u0wbn0p1.png)
The average speed of the astronaut is,
![\begin{gathered} s_(average)=(v+u)/(2) \\ =(0.94+0)/(2) \\ =0.47ms^(-1) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/3s70ixqiwhfey880c4ymo4j5tq0dq2catc.png)
The average speed of the astronaut in Km/h is,
![\begin{gathered} s_(average)=0.47*\frac{10^(-3)^{}^{}}{(1)/(60*60)} \\ s_(average)=0.47*60*60*10^(-3) \\ s_(average)=1.692kmh^(-1) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/7bdtor5ai7a514vm4tj1lkp6lwz0oh1gyg.png)
Thus, the average speed of the astronaut is 1.692 km/h.