481,984 views
33 votes
33 votes
Find y' if y= In (x2 +6)^3/2
y'=

Find y' if y= In (x2 +6)^3/2 y'=-example-1
User Mark F Guerra
by
2.8k points

1 Answer

17 votes
17 votes

Answer:


\displaystyle y' = \frac{3xln(x^2 + 6)^{(1)/(2)}}{x^2 + 6}

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Factoring

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

ln Derivative:
\displaystyle (d)/(dx) [lnu] = (u')/(u)

Explanation:

Step 1: Define


\displaystyle y = ln(x^2 + 6)^{(3)/(2)}

Step 2: Differentiate

  1. [Derivative] Chain Rule:
    \displaystyle y' = (d)/(dx)[ln(x^2 + 6)^{(3)/(2)}] \cdot (d)/(dx)[ln(x^2 + 6)] \cdot (d)/(dx)[x^2 + 6]
  2. [Derivative] Chain Rule [Basic Power Rule]:
    \displaystyle y' = (3)/(2)ln(x^2 + 6)^{(3)/(2) - 1} \cdot (d)/(dx)[ln(x^2 + 6)] \cdot (d)/(dx)[x^2 + 6]
  3. [Derivative] Simplify:
    \displaystyle y' = (3)/(2)ln(x^2 + 6)^{(1)/(2)} \cdot (d)/(dx)[ln(x^2 + 6)] \cdot (d)/(dx)[x^2 + 6]
  4. [Derivative] ln Derivative:
    \displaystyle y' = (3)/(2)ln(x^2 + 6)^{(1)/(2)} \cdot (1)/(x^2 + 6) \cdot (d)/(dx)[x^2 + 6]
  5. [Derivative] Basic Power Rule:
    \displaystyle y' = (3)/(2)ln(x^2 + 6)^{(1)/(2)} \cdot (1)/(x^2 + 6) \cdot (2 \cdot x^(2 - 1) + 0)
  6. [Derivative] Simplify:
    \displaystyle y' = (3)/(2)ln(x^2 + 6)^{(1)/(2)} \cdot (1)/(x^2 + 6) \cdot (2x)
  7. [Derivative] Multiply:
    \displaystyle y' = \frac{3ln(x^2 + 6)^{(1)/(2)}}{2} \cdot (1)/(x^2 + 6) \cdot (2x)
  8. [Derivative] Multiply:
    \displaystyle y' = \frac{3ln(x^2 + 6)^{(1)/(2)}}{2(x^2 + 6)} \cdot (2x)
  9. [Derivative] Multiply:
    \displaystyle y' = \frac{3(2x)ln(x^2 + 6)^{(1)/(2)}}{2(x^2 + 6)}
  10. [Derivative] Multiply:
    \displaystyle y' = \frac{6xln(x^2 + 6)^{(1)/(2)}}{2(x^2 + 6)}
  11. [Derivative] Factor:
    \displaystyle y' = \frac{2(3x)ln(x^2 + 6)^{(1)/(2)}}{2(x^2 + 6)}
  12. [Derivative] Simplify:
    \displaystyle y' = \frac{3xln(x^2 + 6)^{(1)/(2)}}{x^2 + 6}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

User Luisfarzati
by
2.8k points