Given:
![f(x)=2x^2+12x+10](https://img.qammunity.org/2023/formulas/mathematics/college/cpa4wa4uzfyq5g8sv4by1veb64f6wafggp.png)
a) Standard form of the function is,
![\begin{gathered} f(x)=2x^2+12x+10 \\ f(x)=2(x^2+6x+5+9-9) \\ f(x)=2(x^2+6x+9-4) \\ f(x)=2(x+3)^2-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ioyqdvynnae5cra5mx8doseea42x0w4z05.png)
Standard form is,
![f(x)=2(x+3)^2-8](https://img.qammunity.org/2023/formulas/mathematics/college/e4hkedmcan6ovcbk1bwthrlhajxgn4y6y3.png)
b) The vertex of the given function
The vertex of the parabola having form,
![\begin{gathered} y=ax^2+bx+c \\ \text{Vertex}=(-b)/(2a) \\ f(x)=2x^2+12x+10 \\ \text{Vertex}=(-b)/(2a)=(-12)/(2(2))=-(12)/(4)=-3 \\ \text{Put x=-3 in }f(x)=2x^2+12x+10 \\ f(x)=2(-3)^2+12(-3)+10=18-36+10=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z9ka7nitn82gwjgh2ghscnismc5djuk4o6.png)
Vertex is ( -3,-8)
c) x and y-intercept is,
![\begin{gathered} Set\text{ y=0 that means f(x)=0} \\ f(x)=2x^2+12x+10 \\ 2x^2+12x+10=0 \\ 2(x^2+6x+5)=0 \\ x^2+6x+5=0 \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a},a=1,b=6,c=5 \\ x=(-12\pm√(12^2-4\cdot\:2\cdot\:10))/(2\cdot\:2) \\ x=(-12\pm\: 8)/(4) \\ x=-1,x=-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sgirkmnnv29rzd7rhhiseh7a48efl6jmib.png)
x- intercepts are (-1,0) and (-5,0).
For y-intercept , set x=0
![\begin{gathered} f(x)=2x^2+12x+10 \\ y=2x^2+12x+10 \\ y=2(0)+12(0)+10 \\ y=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uyt7lpznqec2osp0ytgj9jrpdipwq19rba.png)
y-intercept is (0,10)
d) the graph of the function is,
e) The domain and range of the function is,
![\begin{gathered} \text{For range of the function f(x)=ax}^2+bx+c\text{ with vertex (x,y)} \\ \text{If a}<0\text{ range is }f(x)\leq y \\ \text{If a>0, range is f(x)}\ge\text{y} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fronjm6wl04mfxlf121wu1qvvoplhzzler.png)
For the given function,
![\begin{gathered} f(x)=2x^2+12x+10\text{ with vertex (-3,-8)} \\ a=2>0,\text{ range is f(x)}\ge\text{-8} \\ \text{Domain is -}\inftyTherefore,[tex]\begin{gathered} \text{Domain of f is (-}\infty,\infty) \\ \text{Range of f is \lbrack-8,}\infty) \end{gathered}]()