169k views
4 votes
Please help me on number one It’s all one question

Please help me on number one It’s all one question-example-1

1 Answer

2 votes

Given:


f(x)=2x^2+12x+10

a) Standard form of the function is,


\begin{gathered} f(x)=2x^2+12x+10 \\ f(x)=2(x^2+6x+5+9-9) \\ f(x)=2(x^2+6x+9-4) \\ f(x)=2(x+3)^2-8 \end{gathered}

Standard form is,


f(x)=2(x+3)^2-8

b) The vertex of the given function

The vertex of the parabola having form,


\begin{gathered} y=ax^2+bx+c \\ \text{Vertex}=(-b)/(2a) \\ f(x)=2x^2+12x+10 \\ \text{Vertex}=(-b)/(2a)=(-12)/(2(2))=-(12)/(4)=-3 \\ \text{Put x=-3 in }f(x)=2x^2+12x+10 \\ f(x)=2(-3)^2+12(-3)+10=18-36+10=-8 \end{gathered}

Vertex is ( -3,-8)

c) x and y-intercept is,


\begin{gathered} Set\text{ y=0 that means f(x)=0} \\ f(x)=2x^2+12x+10 \\ 2x^2+12x+10=0 \\ 2(x^2+6x+5)=0 \\ x^2+6x+5=0 \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a},a=1,b=6,c=5 \\ x=(-12\pm√(12^2-4\cdot\:2\cdot\:10))/(2\cdot\:2) \\ x=(-12\pm\: 8)/(4) \\ x=-1,x=-5 \end{gathered}

x- intercepts are (-1,0) and (-5,0).

For y-intercept , set x=0


\begin{gathered} f(x)=2x^2+12x+10 \\ y=2x^2+12x+10 \\ y=2(0)+12(0)+10 \\ y=10 \end{gathered}

y-intercept is (0,10)

d) the graph of the function is,

e) The domain and range of the function is,


\begin{gathered} \text{For range of the function f(x)=ax}^2+bx+c\text{ with vertex (x,y)} \\ \text{If a}<0\text{ range is }f(x)\leq y \\ \text{If a>0, range is f(x)}\ge\text{y} \end{gathered}

For the given function,


\begin{gathered} f(x)=2x^2+12x+10\text{ with vertex (-3,-8)} \\ a=2>0,\text{ range is f(x)}\ge\text{-8} \\ \text{Domain is -}\inftyTherefore,[tex]\begin{gathered} \text{Domain of f is (-}\infty,\infty) \\ \text{Range of f is \lbrack-8,}\infty) \end{gathered}

Please help me on number one It’s all one question-example-1
User Trubs
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories