44.9k views
4 votes
Given sine of theta equals square root of three/ two determine three possible angles for theta on the domain of [0, infinity)

1 Answer

5 votes

Answer:

60°, 120°, and 420°.

Explanation:

Given:


\sin\theta=(√(3))/(2)

Take the arcsin of both sides:


\begin{gathered} \theta=\arcsin((√(3))/(2)) \\ \theta=60\degree+360(n)\text{ or }\theta=120\degree+360(n),\theta\in[0,\infty) \end{gathered}

Therefore, three possible angles for θ on the domain of [0, ∞) are:


\begin{gathered} \theta=60\degree \\ \theta=120\operatorname{\degree} \\ \theta=60\operatorname{\degree}+360\degree=420\degree \end{gathered}

Three possible angles are 60°, 120°, and 420°.

User Quinnj
by
5.5k points