The volume of a prism is given by:
![V=lwh](https://img.qammunity.org/2023/formulas/mathematics/high-school/75tmbnos9kuyj334ybmsvsgeropug62khi.png)
We know that the height is x. The length is 25 shorter than x, this can be express as:
![x-25](https://img.qammunity.org/2023/formulas/mathematics/college/dpkobee708wnylbxlsf1lbfmsa9lt39z7n.png)
The width is 14 longer than x, this can be express as:
![x+14](https://img.qammunity.org/2023/formulas/mathematics/college/hk6nmcw5kiv9eof7ec3c3uq079yo8pl824.png)
Plugging the expressions for the length, the width and the height we have that:
![\begin{gathered} V=(x-25)(x+14)x \\ V=x(x-25)(x+14) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3w2rrw5r2xp2h45v4bpbbuagkzhet9i0y0.png)
Therefore, the volume of the prism is:
![V=x(x-25)(x+14)](https://img.qammunity.org/2023/formulas/mathematics/college/gz3b7fpd3e9zsf7dddkkc8vntugwo973gv.png)