ANSWER
Step-by-step explanation
Given that;
The speed of the pilot = 670 miles per hour
The first path took her 1 hour 30 minutes
The second path took her 2 hours
Included angle = 170 degrees
To find the distance from the starting position, follow the steps below
Step 1; Find the distance of the first and second path
Recall, that
![\text{ Distance }=\text{ speed }*\text{ time}](https://img.qammunity.org/2023/formulas/mathematics/college/3nej6b64ugcy8gzw33ede5qxxxifw8m311.png)
For the first leg
time = 1 hour 30 minutes
speed = 670 miles per hour
![\begin{gathered} \text{ Distance }=\text{ 1.5}*\text{ 670} \\ \text{ Distance }=\text{ 1005 miles} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l2uyvyajd6snsvfb7r07t00plrus8kt5w6.png)
The first leg = 1005 miles
Second leg
time = 2 hours
speed = 670 miles per hour
![\begin{gathered} \text{ Distance }=\text{ 2 }*\text{ 670} \\ \text{ Distance }=\text{ 1340 miles} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fro6ix75yen4jbh84ol9v7ljpgz4a2o8ca.png)
The second leg = 1340 miles
apply the cosine rule to find the distance from the starting position
![\text{ a}^2\text{ }=\text{ b}^2\text{ }+\text{ c}^2\text{ - 2bc cos A}](https://img.qammunity.org/2023/formulas/mathematics/college/z7wbvj1ndvx4gniwnuqm1urqk07a00r6z3.png)
substitute the given data into the cosine formula
![\begin{gathered} \text{ a}^2\text{ }=\text{ \lparen1005\rparen}^2+\text{ \lparen1340\rparen}^2\text{ - 2\lparen1005}*\text{ 1340\rparen cos 170} \\ \text{ a}^2=\text{ 1010025 }+\text{ 1795600 - 2693400 }*(-0.9848) \\ \text{ a}^2\text{ }=\text{ 2805625 }+2652460.32 \\ \text{ a}^2\text{ }=\text{ 5458085.32} \\ \text{ take the square roots of both sides} \\ √(a^2)\text{ }=\text{ }√(5458085.32) \\ \text{ a }=\text{ 2336.3 miles} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i7ydl2xk936twd8oeav2kutlgrz6u6gdzy.png)
Therefore, distance from the starting position is 2336.3 miles