The given equations are in standard form, first, write them in slope-intercept form.
"p" is the variable in the x-axis
"g" is the variable in the y-axis
First equation
![\begin{gathered} 4p+2g=96 \\ 2g=96-4p \\ (2g)/(2)=(96)/(2)-(4p)/(2) \\ g=-2p+48 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vrqydaczf5m6hauu6d92fgivejxxcggyx1.png)
Second equation
![\begin{gathered} 3p+1g=60 \\ g=60-3p \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2sybgb171vf8aft2i08hbe622mklmx0nzt.png)
Next, you have to determine two points for each equation, the easiest point to determine is the y-intercept, just replace the formula with p=0
For the second point, you can choose any value of p, for example, p=10
First equation
For p=0
![\begin{gathered} g=-2p+48 \\ g=-2\cdot0+48 \\ g=48 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/350thfkvtzryjrllcma7rw8sp6l05zzxvr.png)
The first point is (0,48)
For p=10
![\begin{gathered} g=-2\cdot10+48 \\ g=-20+48 \\ g=28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/voz6fif3d6tlttpjqbjy6i1yd8wemde4cd.png)
The second point is (10,28)
Plot the points and link them with a line.
Second equation
For p=0
![\begin{gathered} g=-3p+60 \\ g=-3\cdot0+60 \\ g=60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f5e3j6ieeoh64ouzgg6q048q77lqqnheem.png)
The first point is (0,60)
For p=10
![\begin{gathered} g=-3\cdot10+60 \\ g=30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/upv9wo9335aalk886bmxsgsrl3vuzg6hph.png)
The second point is (10,30)
Plot both points and link them to determine the line