Solution:
The equation is given below as
![H=20+40T-16T^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/r7os2o7e1n4a4mhn732enb4esd4ytll3s7.png)
Step 1:
To determine the time when the height is at H=30, we will substitute the value of H=30 in the equation above and solve for T
![\begin{gathered} H=20+40T-16T^(2) \\ 30=20+40T-16T^2 \\ collect\text{ similar terms, we will have} \\ 16T^2-40T+30-20=0 \\ 16T^2-40T+10=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h4l7oy5c8hb85km437tplzq5t8ynmtndl6.png)
Using the quadratic formula below, we will find the value of T as
![\begin{gathered} T=(-b\pm√(b^2-4ac))/(2a) \\ a=16,b=-40,c=10 \\ by\text{ substituting the values, we will have} \\ T=(-b\pm√(b^2-4ac))/(2a) \\ T=(-(-40)\pm√((-40)^2-4(16*10)))/(2*16) \\ T=(40\pm√(1600-640))/(32) \\ T=(40\pm√(960))/(32) \\ T=(40\pm30.98)/(32) \\ T=(40+30.98)/(32),T=(40-30.98)/(32) \\ T=2.2seconds,T=0.3seconds \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/y2p01s2g2ran0qreu517i9p80dvzt8tpww.png)
Graphically,
Hence,
The time at which the height of the helicopter will be H=30 is at
![\Rightarrow T=2.2seconds,T=0.3seconds](https://img.qammunity.org/2023/formulas/mathematics/high-school/jid0dv4dpcvfr6jid1qr5tcxjlrn5pqii5.png)
Part B:
To figure out the time at which the height will be H=0, we will substitute the value of H=0 in the equation below and solve for T
![\begin{gathered} H=20+40T-16T^2 \\ H=0 \\ 20+40T-16T^2=0 \\ 16T^2-40T-20=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9yp9grloz3zvczrnfm9p18d9q2uikuvg64.png)
To figure out the value of T, we will use the formula below
![\begin{gathered} 16T^(2)-40T-20=0 \\ T=(-b\pm√(b^2-4ac))/(2a) \\ T=(-(-40)\pm√((-40)^2-4(16*-20)))/(2*16) \\ T=(40\pm√(1600+1280))/(32) \\ T=(40\pm√(2880))/(32) \\ T=(40\pm53.67)/(32) \\ T=(40+53.67)/(32),T=(40-53.67)/(32) \\ T=(93.67)/(32),T=-(13.67)/(32) \\ T=2.9seonds,T=-0.4seconds \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cx9gpb63lbdw991qyf9qm2y9ir15z2wtc5.png)
Hence,
The time at which the remote control helicopter will hit the ground at H=0 will be
![\Rightarrow T=2.9seconds](https://img.qammunity.org/2023/formulas/mathematics/high-school/olbeq82jcsu40yz03u4siiyfdp7fq7kt93.png)