Given:
The mass of the spheres is m1 = m2 = 4.433 g
The distance between the spheres is d = 2.222 cm
The acceleration is a = 240.695 m/s^2
To find the magnitude of the charge in micro-Coulombs.
Step-by-step explanation:
The magnitude of charge can be calculated by the formula

The force can be calculated using Newton's law

On equating the forces, the charges will be

Thus, the magnitude of the charge is 0.242 micro Coulomb.