6.5k views
1 vote
Find the angle between the following pair of vectors: Around your answers to nearest tenths.p = < -8 , 1 > r = < -4 , 0 >

1 Answer

5 votes

\begin{gathered} \cos \text{ }\phi\text{ = }\frac{u\text{ v}} \\ |u|\text{ = }\sqrt[]{-8^2+1^2\text{ }}=\text{ }\sqrt[]{64\text{ + 1}}\text{ = }\sqrt[]{65} \\ |v|\text{ = }\sqrt[]{-4^2+0^2}\text{ = }\sqrt[]{16\text{ }}\text{ = }\sqrt[]{16} \\ \cos \text{ }\phi\text{ = }\frac{(-8\cdot-4)\text{ + (1}\cdot0)}{\sqrt[]{65\text{ }}\cdot\sqrt[]{16}} \\ \cos \text{ }\emptyset\text{ = }\frac{32\text{ 1}}{4\sqrt[]{65}} \\ \cos \text{ }\emptyset\text{ = }\frac{32}{4\sqrt[]{65}} \\ \cos \text{ }\emptyset\text{ = }0.99 \\ \emptyset\text{ = 7.1} \end{gathered}

Angle = 7.1°

User Gilfoyle
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories