You can identify that the triangle is a Right Triangle because it has an angle that measures 90 degrees.
Then, you can use the following Trigonometric Function:
![\tan \beta=(opposite)/(adjacent)](https://img.qammunity.org/2023/formulas/mathematics/college/5vv2jxw8y0gyxiz2oedcksd7sdr7d16coq.png)
In this case:
![\begin{gathered} \beta=15\degree \\ opposite=12 \\ adjacent=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/el7d0lefsc3zhfme2p73ofe20lfmsweala.png)
Therefore, substituting values and solving for "x", you get:
![\begin{gathered} \tan (15\degree)=(12)/(x) \\ \\ x\cdot\tan (15\degree)=12 \\ \\ x=(12)/(\tan (15\degree)) \\ \\ x\approx44.78 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/608crxjx7ixmc78zg74yvmxd0b8v5hbj4d.png)
Hence, the answer is: Option D.