170k views
3 votes
How many terms of the series (-4)+(-1)+2+5….yield a sum of 1022?

User Ashwin A
by
8.6k points

1 Answer

1 vote

Given:

The series is,


-4-1+2+5+\text{.}\ldots.\ldots\ldots

The common difference is 3.

The sum of first n terms of the given arithmetic series is given as,


\begin{gathered} S_n=(n)/(2)\lbrack2a+(n-1)d\rbrack \\ a=\text{ first term}=-4 \\ d=\text{ common difference}=3 \\ S_n=1022 \\ 1022=(n)/(2)\lbrack2(-4)+(n-1)3\rbrack \\ 2\cdot1022=n(-8+3n-3) \\ 2044=3n^2-11n \\ 3n^2-11n-2044=0 \\ \text{Use the quadratic formula,} \\ n=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a},a=3,b=-11,c=-2044 \\ n=(-\left(-11\right)\pm√(\left(-11\right)^2-4\cdot\:3\left(-2044\right)))/(2\cdot\:3) \\ n=(11\pm\: 157)/(6) \\ n=(11+157)/(6),n=(11-157)/(6) \\ n=(168)/(6),n=-(146)/(6) \\ n=28,n=-(73)/(3) \\ \text{But n=-}(73)/(3)\text{ is not possible value} \end{gathered}

It gives n=28.

Answer: the 28 terms of the given series yield a sum of 1022.

User Enzo
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories