154k views
1 vote
8 30° a Solve for a and b using special right triangle rules. b =

User Wytten
by
8.7k points

1 Answer

1 vote

\begin{gathered} a=4\sqrt[]{3} \\ b=4 \end{gathered}

Step-by-step explanation

Step 1

we have a rigth triangle, hence let


\begin{gathered} \text{angle}=\text{ 30} \\ \text{hypotenuse}=8 \\ \text{adjacent side=a} \\ \text{opposite side= b} \end{gathered}

to find a , we need a function that relates adjacent side, angle and hypotenuse


\cos \emptyset=\frac{adjacent\text{ side}}{\text{hypotenuse}}

replace.


\begin{gathered} \cos \emptyset=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \cos \text{ 30=}(a)/(8) \\ \text{Multiply both sides by 8} \\ 8\cdot\cos \text{ 30=}(a)/(8)\cdot8 \\ a=8\cdot\cos \text{ 30} \\ a=8\cdot\frac{\sqrt[]{3}}{2} \\ a=4\sqrt[]{3} \end{gathered}

Step 2

now, to find b we can use sine function


\begin{gathered} \sin \emptyset=\frac{opposite\text{ side}}{\text{hypotenuse}} \\ \end{gathered}

replace.


\begin{gathered} \sin 30=(b)/(8) \\ \text{Multiply both sidese by 8} \\ 8\cdot\sin 30=(b)/(8)\cdot8 \\ 8\sin \text{ 30=b} \\ 4=b \end{gathered}

I hope this helps you

User Skaal
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories