86.7k views
2 votes
Solve in R Ps : The vertical bars represent the absolute values

Solve in R Ps : The vertical bars represent the absolute values-example-1
User Bhovhannes
by
7.9k points

1 Answer

4 votes

Given:


\left|2x\text{ +10\mid-\mid x}^2\text{ +3x -10\mid -x+2=-3}\right?

Step 1: Add |x^2+3x-10| to both sides.


\begin{gathered} |2x+10|−|x^2+3x−10|−x+2+|x^2+3x−10|=−3+|x^2+3x−10| \\ |2x+10|−x+2=|x^2+3x−10|−3 \end{gathered}

Step 2: Step 2: Add x to both sides.


\begin{gathered} \left|2x+10|−x+2+x=|x2^+3x−10|−3+x\right? \\ |2x+10|+2=|x^2+3x−10|+x−3 \end{gathered}

Step 3: Step 3: Add -2 to both sides.


\begin{gathered} |2x+10|+2+−2=|x2+3x−10|+x−3+−2 \\ |2x+10|=|x2+3x−10|+x−5 \end{gathered}
Either\text{ }2x+10=|x^2+3x−10|+x−5\text{ }or\text{ }2x+10=−\left(|x^2+3x−10|+x−5\right)
Part1:2x+10=|x^2+3x−10|+x−5

(Flip the equation)


\begin{gathered} |x^2+3x−10|+x−5=2x+10 \\ |x^2+3x−10|+x−5+−x=2x+10+−x\left(Add-x\text{ }to\text{ }both\text{ }sides\right) \\ |x^2+3x−10|−5=x+10 \\ |x^2+3x−10|−5+5=x+10+5\left(Add\text{ }5\text{ }to\text{ }both\text{ }sides\right) \\ |x^2+3x−10|=x+15 \\ We\text{ }know\text{ }either\text{ }x^2+3x−10=x+15\text{ }or\text{ }x^2+3x−10=−\left(x+15\right) \end{gathered}
\begin{gathered} x^2+3x−10=x+15\left(Possibility1\right) \\ x^2+3x−10−\left(x+15\right)=x+15−\left(x+15\right)\left(Subtract\text{ }x+15\text{ }from\text{ }both\text{ }sides\right) \\ x^2+2x−25=0 \\ For\text{ }this\text{ }equation:a=1,b=2,c=-25 \\ 1x^2+2x+−25=0 \\ x=\text{ }(-b\pm√(b^2-4ac))/(2a) \\ x=−1+√26\text{ }or\text{ }x=−1−√26 \end{gathered}
\begin{gathered} x^2+3x−10=−\left(x+15\right)\left(Possibility\text{ }2\right) \\ x^2+3x−10=−x−15\left(Simplify\text{ }both\text{ }sides\text{ }of\text{ }the\text{ }equation\right) \\ x^2+4x+5=0 \\ x\text{ = }\frac{-4\text{ }\pm\text{ }√(-4)}{2} \end{gathered}

Check answers. (Plug them in to make sure they work.)


\begin{gathered} x=−1+√26\text{ }\lparen Works) \\ x=−1−√26\left(Doesn^{\prime\text{ }}twork\right) \end{gathered}


Part2:2x+10=−\left(|x^2+3x−10|+x−5\right)

(Flip the equation)


\begin{gathered} −|x^2+3x−10|−x+5=2x+10 \\ −|x^2+3x−10|−x+5+x=2x+10+x\left(Addx\text{ }to\text{ }both\text{ }sides\right) \\ −|x^2+3x−10|+5=3x+10 \\ −|x^2+3x−10|+5+−5=3x+10+−5\left(Add-5tobothsides\right) \\ |x^2+3x−10|=−3x−5\text{ } \\ We\text{ }know\text{ }either\text{ }x^2+3x−10=−3x−5\text{ }or\text{ }x^2+3x−10=−\left(−3x−5\right) \end{gathered}
\begin{gathered} x^2+3x−10=−3x−5\left(Possibility1\right) \\ Solving \\ x=−3+√14\text{ }or\text{ }x=−3−√14 \end{gathered}


\begin{gathered} x^2+3x−10=−\left(−3x−5\right)\left(Possibility2\right) \\ x=√15\text{ }o\text{ }rx=−√15 \end{gathered}

Check answers:


\begin{gathered} x=−3+√14\left(Doesn^(\prime)t\text{ }work\text{ }in\text{ }original\text{ }equation\right) \\ x=−3−√14\left(Works\text{ }in\text{ }original\text{ }equation\right) \\ x=√15\left(Doesn^(\prime)t\text{ }work\text{ }in\text{ }original\text{ }equation\right) \\ x=−√15\left(Doesn^(\prime)t\text{ }work\text{ }in\text{ }original\text{ }equation\right) \end{gathered}

Answer:


x=−1+√26\text{ }or\text{ }x=−3−√14

User Pratik Mandrekar
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories