170k views
5 votes
determine the number of cubic centimeters of ice cream that you have in the cone and the scoop on top

determine the number of cubic centimeters of ice cream that you have in the cone and-example-1
User Vasspilka
by
3.5k points

1 Answer

4 votes

Given a cone and a scoop of ice cream.

To determine: The cubic centimeters of ice cream

Solution:

The ice is a combination of the shape of a cone and a hemisphere. To find the cubic centimeters of the ice cream, we would find the volume of the cone and the hemisphere.


V_{\text{ice cream}}=V_(cone)+V_(hemisphere)
\begin{gathered} V_{\text{cone}}=(1)/(3)\pi r^2h \\ d=6\operatorname{cm}(given) \\ r=(d)/(2)=\frac{6\operatorname{cm}}{2}=3\operatorname{cm} \\ h=13\operatorname{cm}(\text{given)} \end{gathered}
\begin{gathered} V_{\text{cone}}=(1)/(3)\pi r^2h \\ V_{\text{cone}}=(1)/(3)\pi*3^2*13 \\ V_{\text{cone}}=39\pi\operatorname{cm}^3 \end{gathered}
\begin{gathered} V_{\text{hemisphere}}=(2)/(3)\pi r^3 \\ r=3\operatorname{cm} \\ V_{\text{hemisphere}}=(2)/(3)\pi*3^3 \\ V_{\text{hemisphere}}=18\pi cm^3 \end{gathered}
\begin{gathered} V_{\text{ice cream}}=V_(cone)+V_(hemisphere) \\ V_{\text{ice cream}}=39\pi cm^3+18\pi cm^3 \\ V_{\text{ice cream}}=57\pi cm^3 \\ V_{\text{ice cream}}=179.07\operatorname{cm}^3 \end{gathered}

Hence, the number of cubic centimeters of ice cream is 179.07cm³

User Zerlina
by
3.9k points