The data is given to be:
![7,2,5,1](https://img.qammunity.org/2023/formulas/mathematics/college/cy8yydej3mx6fzz91p5jdjt029ekql93hv.png)
Standard Deviation
The formula used to calculate the standard deviation of a sample data is given to be:
![\sigma={\sqrt{\frac{\sum(x_i-{\mu})^2}{N-1}}}](https://img.qammunity.org/2023/formulas/mathematics/college/uh65o688fzmqekvfax4guhme77nt1q6n5i.png)
where
σ=population standard deviation
N=the size of the population
xi=each value from the population
μ=the population mean
The sample mean is calculated as shown below:
![\mu=(7+2+5+1)/(4)=3.75](https://img.qammunity.org/2023/formulas/mathematics/college/ovmhsjgfre5y7c7bk2867nmd4lpu4eitfd.png)
Therefore, we can calculate the standard deviation to be:
![\begin{gathered} \sigma=\sqrt{((7-3.75)^2+(2-3.75)^2+(5-3.75)^2+(1-3.75)^2)/(4-1)} \\ \sigma=2.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o04l23iks080pvjk00ae1setm0m7yikzh7.png)
Variance
The variance is the square of the standard deviation. Therefore, we can calculate the variance as follows:
![Variance=2.8^2=7.8](https://img.qammunity.org/2023/formulas/mathematics/college/ls77bvvxvwa261gpokkxoisenvtvooxyqz.png)
ANSWERS
![\begin{gathered} Standard\text{ }Deviation=2.8 \\ Variance=7.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tvh9ftkusjuxki5dfywtv8o0yjj54c4dv1.png)