Since, the cost C in dollars is a linear function of the length L in feet, we can write:
![C=mL+b](https://img.qammunity.org/2023/formulas/mathematics/college/r23kx11pdnm3eaove40b0gm2mtpeq543u6.png)
Where
m is the slope
b is the y-intercept of the line graphed.
The points are in the from (L, C) which is (length, cost). Given:
(80, 20) and (200, 100)
The slope (m) is:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Let the points be:
![\begin{gathered} (x_1,y_1)=(80,20) \\ (x_2,y_2)=(200,100) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xceu7be7rvo5ydpu0hfc4eo4i9h8fe1k00.png)
So slope is:
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ m=\frac{100-20_{}}{200-80_{}} \\ m=(80)/(120) \\ m=(2)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zuoazuzp2qg2r2df2utguuglnvi1iy0zfa.png)
The equation becomes:
![C=(2)/(3)L+b](https://img.qammunity.org/2023/formulas/mathematics/college/g9bn45m204qnab68v3rnkecj26pmyc5f9l.png)
Let's take the point (L, C) = (80, 20) and find out b:
![\begin{gathered} C=(2)/(3)L+b \\ 20=(2)/(3)(80)+b \\ 20=(160)/(3)+b \\ b=20-(160)/(3) \\ b=(60-160)/(3) \\ b=(-100)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wvarza8gk00w57zzplzxnknt3l8ntucz0z.png)
The formula for the function is:
![C=(2)/(3)L-(100)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/27am8rqyaglpm8wx6jib5qkmtkkis9xidx.png)
The cost of installing 210 feet of pipe:
We plug in L = 210 into formula and find C:
![\begin{gathered} C=(2)/(3)(210)-(100)/(3) \\ C=140-(100)/(3) \\ C=(420-100)/(3) \\ C=(320)/(3) \\ C=\$106.67 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/myea7ieph8uwpxygjvcanxecmm8dg2jhq4.png)