102k views
3 votes
A vector starts at point ( 8, 7) and ends at point (5, 4) what is the magnitude of the vector, answer to two decimal places.

User Hari Honor
by
8.2k points

1 Answer

3 votes

The points are given below,


\begin{gathered} A\rightarrow(x_1,y_1)\rightarrow(8,7) \\ B\rightarrow(x_2,y_2)\rightarrow(5,4) \end{gathered}

The formula for the magnitude of the vector AB is,


|\vec{AB}|=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2_{}}

Solving for the magnitude of the vector AB by substituting the values of x₁ = 8, x₂= 5, y₁ = 7, y₂ = 4.


|\vec{AB}|=\sqrt[]{(5-8)^2+(4-7)^2}

Therefore,


\begin{gathered} |\vec{AB}|=\sqrt[]{(-3)^2+(-3)^2_{}^{}} \\ |\vec{AB}|=\sqrt[]{9+9} \end{gathered}
\begin{gathered} |\vec{AB}|=\sqrt[]{18}=4.242640687\approx4.24(nearest\text{ 2decimal places)} \\ |\vec{AB}|=4.24 \end{gathered}

Hence, the magnitude of the vector AB is 4.24.

User Mako
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories