The question can be represented by:
where
![y=\frac{\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/8rmon44dwc27e29jp29xs4yi8auv1s6lwn.png)
Note that the Hypotenuse is 1 because a unit circle has a radius of 1.
Considering the triangle from the diagram above, we can find x using the Pythagorean Theorem:
![\begin{gathered} 1^2=x^2+y^2 \\ 1=x^2+(\frac{\sqrt[]{3}}{2})^2 \\ 1=x^2+(3)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wcm0ybra1ndrmjysm41zz23wxtqm2ucawy.png)
Solving for x, we have
![\begin{gathered} x^2=1-(3)/(4) \\ x^2=(1)/(4) \\ x=\sqrt[]{(1)/(4)} \\ x=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e1wzkdljws7vzdvvuic7r9bdijwdiqob0u.png)
The value of x is 1/2.