3.3k views
3 votes
The total amount of money in an account with P dollars invested in it is given by the formulaA = P + Prt.where r is the rate expressed as a decimal and t is time (in years).If $1862 is invested at 5 %, how much money will be in the account after 6 months? Round your answer to the nearest cent.

The total amount of money in an account with P dollars invested in it is given by-example-1

2 Answers

2 votes

The amount in the account after 6 months is 1908.55

Using the formula given ;

  • A = P + Prt
  • P = principal = 1862
  • r = rate = 5% = 0.05
  • time = 6 months = 1/2 = 0.5 years

Inputting the values into the formula ;

A = 1862 + (1862 × 0.05 × 0.5)

A = 1862 + 46.55

A = 1908.55

The amount in the account after 6 months is 1908.55

User Reezy
by
4.5k points
3 votes

Given the formula:


A=P+Prt

You know that "A" is the amount, "P" is the number of dollars invested" r" is the rate (as a decimal), and "t" is time in years.

In this case, you can identify that:


\begin{gathered} P=1862 \\ \\ r=(5)/(100)=0.05 \end{gathered}

Remember that a percent can be converted to a Decimal Number by dividing it by 100.

Knowing that 1 year has 12 months, you can determine that 6 months is a half of a year:


t=(1)/(2)

Then, substituting values into the formula and evaluating, you get:


\begin{gathered} A=P+Prt \\ A=1862+(1862)(0.05)((1)/(2)) \end{gathered}
\begin{gathered} A=1862+46.55 \\ A=1908.55 \end{gathered}

Therefore, the answer is: $1908.55

User Hamza Hasan
by
4.5k points