235k views
0 votes
Reflect the shape below across the line x = -2. Label the new coordinates

Reflect the shape below across the line x = -2. Label the new coordinates-example-1

1 Answer

6 votes

By definition, the reflection of the point P(x,y) in the line x = a is the point P'(-x+2a,y).


\begin{gathered} \text{ line }x=a \\ P(x,y)\rightarrow P^(\prime)(-x+2a,y) \end{gathered}

So, in this case, you have


\begin{gathered} \text{ Line }x=-2 \\ \text{ Then a=-2} \end{gathered}

And the transformation rule will be


\begin{gathered} P(x,y)\rightarrow P^(\prime)(-x+2(-2),y) \\ P(x,y)\rightarrow P^(\prime)(-x-4,y) \end{gathered}

Now, the coordinates of the image points will be


p(-4,4)\rightarrow p´(-(-4)-4,4)=p´(4-4,4)=p´(0,4)
q(0,5)\rightarrow q^(\prime)(-0-4,5)=q^(\prime)(-4,5)
r(-6,-2)\rightarrow r^(\prime)(-(-6)-4,-2)=r^(\prime)(6-4,-2)=r^(\prime)(2,-2)

Graphically you have

Reflect the shape below across the line x = -2. Label the new coordinates-example-1
User Mun
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories