The formula that gives the volume V of a right cylinder with radius r and height h is presented below:

Step 1: Divide both sides by πh

Step 2: Take the square root of both sides.
![\begin{gathered} \sqrt[]{r^2}=\sqrt[]{(V)/(\pi h)} \\ r=\sqrt[]{(V)/(\pi h)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ovd69vfgkra7a2bxycmjv9aou44vzer7r.png)
Step 3: We can multiply both the numerator and denominator by πh to get:
![\begin{gathered} r=\sqrt[]{(V\pi h)/(\pi^2h^2)} \\ =\frac{\sqrt[]{V\pi h}}{\sqrt[]{\pi^2h^2}} \\ r=\frac{\sqrt[]{V\pi h}}{\pi h} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rwc4u8zxuiob6wnyhr3mfxy3jlp9v6m35a.png)
The correct option is the last one.