The pair of point are writing in form of coordinate, hence the first value is x while the second value is the y.
Substituting each of the point in the options into the inequality
for (-2,0) x=-2, y=0
![\begin{gathered} y<8x+16 \\ 0<8(-2)+16 \\ 0<-16+16 \\ 0<0\text{ (wrong)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qr0z6stz8udvfxixi05lb3p4spwxu7br7z.png)
For the point (-2,2) x=-2,y=2
![\begin{gathered} 2<8(-2)+16 \\ 2<0(\text{wrong)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wwdywppoezyhrdbx2ozf3fzu0djewensog.png)
For the point (0,-16) x=0, y=-16
![\begin{gathered} \text{substituting into the inequality we have} \\ -16<8(0)+16 \\ -16<16(\text{ right)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9gkumlmxwfusi0m37z0avv8ogdnk93cfvc.png)
For the point (0,16) x=0,y=16
![\begin{gathered} 16<8(0)+16 \\ 16<16\text{ (wrong)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gcrddl2eeekcs60bwngmz6f7yb0nfcddol.png)
Hence the ordered pair of the solution is (0,-16)
Option C is the right option