Given the equation:
![y=(1)/(2)\mleft(x+1\mright)^2+4](https://img.qammunity.org/2023/formulas/mathematics/college/q8pxzh7v7aedghau7m1cmegrghu3x9etrj.png)
• You can identify that it has this form:
![y=a\mleft(x-h\mright)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/scra6jlgca7d42k0ejn5wrwn7095835w7m.png)
Where its Vertex is:
![(h,k)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r1bijgiz1knkpv8mbwskalqzfunmt8qgad.png)
And the Focus is:
![(h,k+(1)/(4a))](https://img.qammunity.org/2023/formulas/mathematics/college/wbl2rqkpcusfo9tte7k59rp7gc10zwo918.png)
In this case, you can identify that:
![\begin{gathered} h=-1 \\ k=4 \\ \\ a=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6eaufd964jt3hmn7c6vebcre9nwb1guqf5.png)
Therefore, you can determine that the Focus is:
![(-1,4+(1)/(4\cdot(1)/(2)))=(-1,(9)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/ylgknxbgd094i2pmcwtx21dip9p37oupnx.png)
In order to write the y-coordinate of the Focus as a Mixed Numbers, you need to:
- Divide the numerator by the denominator.
- The Quotient will be the whole number part:
![4](https://img.qammunity.org/2023/formulas/mathematics/college/c3e9sa9no4fqk28usmnz33xreg4jtzmvze.png)
- The new numerator will be the Remainder:
![1](https://img.qammunity.org/2023/formulas/mathematics/college/evnrnniir5yjru256yeh5ynmx9yfplp1wo.png)
- The denominator does not change.
Then:
![(9)/(2)=4(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/h64mqubdibx5rthiptf3uvhgbl964xih4a.png)
• In order to find the Directrix, you need to remember that, by definition, the Directrix has the same distance from the vertex that the Focus of the parabola is. Therefore:
![y=k-a](https://img.qammunity.org/2023/formulas/mathematics/college/lu0fewjw3smojsbdckzxyx8ew4156vhpca.png)
![y=4-(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/53oakahqyf0ymn5ejl5ztm6s5c7e2grjfc.png)
![y=(7)/(2)](https://img.qammunity.org/2023/formulas/physics/high-school/b8p1zqyoe6kltegkbmldbk0t8vjexvyr6l.png)
Apply the same procedure shown before, in order to convert the Improper Fraction to a Mixed Number. Hence, you get:
![y=3(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/aqcmekpgjtwj9mm7a64tg8vkc2eajfl2j4.png)
Therefore, the answer is: Option A.