SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given expressions
![6x^2+39x-21\text{ }and\text{ }6x^2+54x+84](https://img.qammunity.org/2023/formulas/mathematics/college/ns7ljsx09l1zinnzhoeioxqmo6egab3va4.png)
STEP 2: Define the least common multiple
The Least Common Multiple ( LCM ) is also referred to as the Lowest Common Multiple ( LCM ) and Least Common Divisor ( LCD) . For two integers a and b, denoted LCM(a,b), the LCM is the smallest positive integer that is evenly divisible by both a and b.
STEP 3: Find the LCM
Factorize the first expression
![6x^2+39x-21=3(2x-1)(x-7)](https://img.qammunity.org/2023/formulas/mathematics/college/99n7mij7vxxbuxwww7477s7dn4ep2nnrz6.png)
Factorize the second expression:
![6x^2+54x+84=3(x+2)(x+7)](https://img.qammunity.org/2023/formulas/mathematics/college/yprop3w8xvffsqvhh6fplm6tqzsegnssiu.png)
Calculating the LCM, we have:
![\begin{gathered} \mathrm{Multiply\:each\:factor\:with\:the\:highest\:power:} \\ 2\cdot \left(2x-1\right)\cdot \:3\cdot \left(x+2\right)\cdot \left(x+7\right) \\ Simplify \\ 6\left(2x-1\right)\left(x+2\right)\left(x+7\right) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fjexewng3b6jz1jl65ks0lwdfoi41b55fd.png)
Evlauating the result gives:
![12x^3+102x^2+114x-84](https://img.qammunity.org/2023/formulas/mathematics/college/ayhhnx1y5o5bvz5wjfmfahpx8umjqdvb9x.png)
Hence, the LCM is:
![12x^3+102x^2+114x-84](https://img.qammunity.org/2023/formulas/mathematics/college/ayhhnx1y5o5bvz5wjfmfahpx8umjqdvb9x.png)