Since we have two angles of 45° and a right angle, we can deduce the opposite and the adjacent side are the same.
Using the pythagoras theorem we have,
![\begin{gathered} a^2+b^2=c^2 \\ x^2+x^2=\sqrt[]{5}^2\text{ Adding like terms we have} \\ 2x^2=5\text{ Isolating x, we get.} \\ x^2=(5)/(2)\text{ finding the root we have} \\ x=\sqrt[]{(5)/(2)}=\frac{\sqrt[]{5}}{\sqrt[]{2}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jraszglx5sab2k4t5cx62pl4e17kr1jp1q.png)
Then, we have to find the simplest radical form, with the rational denominator. Rationalizing we have.
![\frac{\sqrt[]{5}}{\sqrt[]{2}}=\frac{\sqrt[]{5}}{\sqrt[]{2}}\cdot\frac{\sqrt[]{2}}{\sqrt[]{2}}=\frac{\sqrt[]{5\cdot2}}{\sqrt[]{2\cdot2}}=\frac{\sqrt[]{10}}{\sqrt[]{4}}=\frac{\sqrt[]{10}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/3juq7m11au30wex58jyfmfl1pk89992cf6.png)
The final answer is
![x=\frac{\sqrt[]{10}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/b9ezut8cztspqmhtwjxe0kv9042ewrkj8e.png)