8.422 ft
Step 1
given:
![\begin{gathered} x=12t \\ y=-16t^2+17.2t+6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/86bnevki9yvtv2r9fbwm14kzg0yrrzssez.png)
hence
a)find the time wich the distance horizontally is 2 ft
so
let
![x=2](https://img.qammunity.org/2023/formulas/mathematics/college/6ij5lvx45qkbn22ki7umkb6rdcr9rugcgd.png)
now ,replace and solve for t
![\begin{gathered} x=12t \\ 2=12t \\ divide\text{ both sides by 12} \\ (2)/(12)=(12t)/(12) \\ (1)/(6)=t \\ t=(1)/(6)\text{ seconds} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7odk8b7c3svjxvvn9ywx32tvphe8006gvr.png)
b)now, find the heigth for the given time
let
![t=\text{ }(1)/(6)\text{ sec}](https://img.qammunity.org/2023/formulas/mathematics/college/yauub6c4qx23iklihvf8985nbdtt07xsef.png)
now, replace in the parametric equation
![\begin{gathered} y=-16t^2+17.2t+6 \\ y=-16((1)/(6))^2+17.2((1)/(6))+6 \\ y=-(16)/(36)+(17.2)/(6)+6 \\ y=-0.4444+2.8666+6 \\ y=8.422 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6wtbbt4g0b81qcgn42mgiv2ramcm72vl2u.png)
therefore, the answer is
8.422 ft
I hope this helps you