Given the following System of equations:
![\begin{cases}x-5y=5 \\ 4x-11y=29\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/32mlvhoc7x6njtn1mwfu00uxkcrs9rjgvx.png)
You can solve it using the Elimination method. Follow the steps shown below:
1. Multiply the first eqeuation by -4,
2. Add the equations.
3. Solve for the variable "y".
Then:
![\begin{gathered} \begin{cases}-4x+20y=-20 \\ 4x-11y=29\end{cases} \\ ----------- \\ 9y=9 \\ y=(9)/(9) \\ \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/woyn46br1zx16zwmot8otpicknttd87212.png)
4. Now you must substitute the value of the variable "y" into any original equation.
5. Solve for the variable "x".
Then, you get:
![\begin{gathered} x-5y=5 \\ x-5(1)=5 \\ x-5=5 \\ x=5+5 \\ x=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u4653lc0hcx7f6z9xu0xemkbo6oaacm0ei.png)
The solution is:
![\begin{gathered} x=10 \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gf7p79srnbvv7vwserzmsdsuf8l8apcuar.png)