Let:
x = Investment in the first year
y = Investment in the second year
Since connor had 91.00 to invest:
![x+y=91.00](https://img.qammunity.org/2023/formulas/mathematics/college/wwatkcp9uivikka4eb5r87whjd2wzexodi.png)
Using the simple interest formula:
For 16%:
![\begin{gathered} I1=PV\cdot r\cdot t \\ so\colon \\ I1=x\cdot0.16\cdot1 \\ I1=0.16x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xkiut0qd8lav4etmttq0mpzh3p35lyfs7p.png)
For 14%:
![\begin{gathered} I2=PV\cdot r\cdot t \\ so\colon \\ I2=y\cdot0.14\cdot2 \\ I2=0.14y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ie1t63bla9w1q28cv4rpdk059xvbwqcu6o.png)
After one year, the total interest earned was $13.74. so:
![I1+I2=13.74=0.16x+0.14y](https://img.qammunity.org/2023/formulas/mathematics/college/2lw03sh9x1remoulx02v0yt0nnne8mp7tz.png)
So:
![\begin{gathered} x+y=91_{\text{ }}(1) \\ 0.16x+0.14y=13.74_{\text{ }}(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7a9y4r3lgkr6kcuvr9jfdya1ixwib9d3wy.png)
From (1):
![x=91-y_{\text{ }}(3)](https://img.qammunity.org/2023/formulas/mathematics/college/gcl3s8hgn1sxdrt1far5xqdlx3s2vlbrdm.png)
Replace (3) into (2):
![\begin{gathered} 0.16(91-y)+0.14y=13.74 \\ 14.56-0.16y+0.14y=13.74 \\ -0.02y=-0.82 \\ y=41 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pnakf4tizlhr288n5a0b4o8qtjo49ncvfh.png)
Replace the value of y into (3):
![\begin{gathered} x=91-41 \\ x=50 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cgxl4tfjchrd15t8oflj2vpl8r10sp2pey.png)
He invested $50 at 16% and $41 at 14%