To solve this problem, we will set and solve a system of equations.
Let x be the number of nickels you have in your pocket, and y the number of dimes, then with the given information, we can set the following system of equations:
![\begin{gathered} 0.05x+0.10y=0.85, \\ x+y=12. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nomfnw1ugwijrzev6tfb098bcuwtg7p25f.png)
Multiplying the second equation by -0.10 and adding it to the first equation, we get:
![0.05x-0.10x+0.10y-0.10y=0.85-1.2.](https://img.qammunity.org/2023/formulas/mathematics/college/jx2cpy6el8ba7fgx1tfre2lnf8l0uln28j.png)
Solving the above equation for x, we get:
![\begin{gathered} -0.05x=-0.35, \\ x=(-0.35)/(-0.05), \\ x=7. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mvdniag49l62wde6ml8yueb5w8caub75xz.png)
Solving the second equation of the system for y, we get:
![y=12-x.](https://img.qammunity.org/2023/formulas/mathematics/college/n9hznlt3w9niunr2w90tj7sw29tpxwqey9.png)
Finally, substituting x=7, we get:
![y=12-7=5.](https://img.qammunity.org/2023/formulas/mathematics/college/x1124t3a0bj31vb03qfzf2wa77un408bwx.png)
Answer:
![\begin{gathered} 7\text{ nickels, } \\ 5\text{ dimes.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/upuog6xajlt32jfzo1p9413d7ja2zf0euv.png)