a.
In order to calculate the angle of the refracted light, we can use the law of refraction below:
![n_1\cdot\sin\theta_1=n_2\cdot\sin\theta_2](https://img.qammunity.org/2023/formulas/physics/college/e185taiwzoeklxkham51vkqgl0zno2eqzu.png)
Where n1 and n2 are the index of refraction and theta1 and theta2 are the incident angle and angle of refraction.
So, using n1 = 1, n2 = 1.33 and theta1 = 35°, we have:
![\begin{gathered} 1\cdot\sin\mleft(35°\mright)=1.33\cdot\sin\theta_2\\ \\ 0.5735764=1.33\cdot\sin\theta_2\\ \\ \sin\theta_2=(0.5735764)/(1.33)\\ \\ \sin\theta_2=0.43126\\ \\ \theta_2=25.55° \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/vb1biuzttlr0uzd9w1zqty0avjgfkforor.png)
b.
To find the velocity, we can use the formula below:
![\begin{gathered} n=(c)/(v)\\ \\ 1=(3\cdot10^8)/(v)\\ \\ v=3\cdot10^8\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/g7ev7srf4t9x4b4xlnyns26ubhhuh2jkr7.png)
c.
Using the same formula from item b, but now using n2, we have:
![\begin{gathered} n=(c)/(v)\\ \\ 1.33=(3\cdot10^8)/(v)\\ \\ v=(3\cdot10^8)/(1.33)\\ \\ v=2.256\cdot10^8\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ig6rpzxre2zt6089fbz5jlcoerwqw6t0l7.png)