26.4k views
0 votes
7. Find the derivative of 2x³+ 3y² = 7xy

1 Answer

2 votes

Step 1: Write out the expression


2x^3+3y^2=7xy

Step 2: Differentiate implicitly


\begin{gathered} 6x^2+6yy^(\prime)=7(xy^(\prime)+y) \\ \text{ Wh}ere \\ y^(\prime)=\frac{\text{ dy}}{dx} \end{gathered}

Step 4: Isolate y'


\begin{gathered} 6x^2+6yy^(\prime)=7xy^(\prime)+7y \\ 6yy^(\prime)-7xy^(\prime)=7y-6x^2 \\ y^(\prime)(6y-7x)=7y-6x^2 \\ \text{Dividing both sides by }6y-7x,\text{ we have} \end{gathered}
y^(\prime)=(7y-6x^2)/(6y-7x)

Hence the derivative is


(7y-6x^2)/(6y-7x)

(7y - 6x²)/(6y - 7x)



User Garak
by
4.1k points