145k views
1 vote
Right triangle XYZ hasm∠Y = 90° , m∠X = 45° and side XZ = 36Find the area of triangle XYZ.

Right triangle XYZ hasm∠Y = 90° , m∠X = 45° and side XZ = 36Find the area of triangle-example-1

1 Answer

2 votes

Given:

In a right triangle XYZ,


\begin{gathered} m\angle Y=90\degree \\ m\angle X=45\degree \\ \text{The side, }XZ=36 \end{gathered}

To find the area of the triangle:

Let us find the base and height of the triangle.

Using the trigonometric ratio,


\begin{gathered} \sin \theta=(Opp)/(Hyp) \\ \sin 45^(\circ)=(YZ)/(XZ) \\ \frac{1}{\sqrt[]{2}}=(YZ)/(36) \\ YZ=\frac{36}{\sqrt[]{2}} \\ =\frac{36}{\sqrt[]{2}}*\frac{\sqrt[]{2}}{\sqrt[]{2}} \\ =\frac{36\sqrt[]{2}}{2} \\ YZ=18\sqrt[]{2}\ldots\ldots\ldots(1) \end{gathered}

Using the trigonometric ratio,


\begin{gathered} \cos \theta=\frac{\text{Adj}}{Hyp} \\ \cos 45^(\circ)=(XY)/(XZ) \\ \frac{1}{\sqrt[]{2}}=(XY)/(36) \\ XY=\frac{36}{\sqrt[]{2}} \\ =\frac{36}{\sqrt[]{2}}*\frac{\sqrt[]{2}}{\sqrt[]{2}} \\ =\frac{36\sqrt[]{2}}{2} \\ XY=18\sqrt[]{2}\ldots\ldots\ldots(2) \end{gathered}

The formula of area of the triangle is,


\begin{gathered} A=(1)/(2)* base* height \\ =(1)/(2)* XY* YZ \\ =(1)/(2)*18\sqrt[]{2}*18\sqrt[]{2} \\ =324 \end{gathered}

Hence, the area of the triangle is 324 square units.

User Ejdrien
by
7.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories