ANSWER
Current (l) = 7.81 amps (rounded to 2 decimal places)
Step-by-step explanation
Declaration of Variables
Let l represent the current in a wire,
v represent the voltage, and
r represent the resistance
Desired Outcome
The current (l)
Equation formation
![\begin{gathered} l\propto(v)/(r) \\ l\text{ = }(kv)/(r) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/anhtekq80yye18nosahn2wjcvtruozg5qg.png)
where k is the constant of proportionality.
Determine the value of k given l = 27.5, v = 110, and r = 4.
![\begin{gathered} l\text{ = }(kv)/(r) \\ 27.5\text{ = }(k*110)/(4) \\ 110k\text{ = 27.5}*4 \\ 110k\text{ = 110} \\ k\text{ = }(110)/(110) \\ k\text{ = 1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f3urzbbd7ll1xye8siaef036fl6nql2ntl.png)
Find the current (l) given v = 125, and r = 16.
![\begin{gathered} l\text{ = }(kv)/(r) \\ l\text{ = }(1*125)/(16) \\ l\text{ = 7.8125 amps} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/knedb9ksq39tfwjr27kfehcr19dc5kqyop.png)
Hence, the current (l) when the voltage is 125 volts and the resistance is 16 ohms is 7.81 amps (rounded to 2 decimal places).