We are asked to reflect the vertices of a triangle first across the x-axis and then across the line y = -x. The rule for a reflection across the x-axis is the following:
![(x,y)\rightarrow(x,-y)](https://img.qammunity.org/2023/formulas/mathematics/college/d7a29ae1nc5itoub5zbvfqbwxpczq9rzr6.png)
Or
![R_x(x,y)=(x,-y)](https://img.qammunity.org/2023/formulas/mathematics/college/443pgycjygqsu4gsu156et9acrqkgjbrtk.png)
The rule for the reflection across the line y = -x:
![(x,y)\rightarrow(-y,-x)](https://img.qammunity.org/2023/formulas/mathematics/college/s95jsg87jmmw4ebv3603unayyw5jduolzx.png)
Therefore, applying both transformations we get:
![(x,y)\rightarrow(x,-y)\rightarrow(y,-x)](https://img.qammunity.org/2023/formulas/mathematics/college/9w6j95etnl1i0j5o25q80zf8503rbsjlro.png)
Applying the rule to each point.
For point F(-6,8) we get:
![(-6,8)\rightarrow(-6,-8)\rightarrow(8,6)](https://img.qammunity.org/2023/formulas/mathematics/college/w8z0kbmck91azxxzoxlakw91qz7os9at34.png)
For point G(-3,-1):
![(-3,-1)\rightarrow(-3,1)\rightarrow(-1,3)](https://img.qammunity.org/2023/formulas/mathematics/college/qc1pv7jxyk67u6lxccpj5852rwslrno8mj.png)
For point H(0,4) we get:
![(0,4)\rightarrow(0,-4)\rightarrow(4,0)](https://img.qammunity.org/2023/formulas/mathematics/college/4m6jbkcv0t9j6my8tmrh37jijqk4lwxdwy.png)