3 clear values are the mean and at least two values of 74 since it is the mode
![\begin{gathered} 74 \\ 74 \\ 80 \\ a \\ b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aysyvrx3oihm34d7ivgfh2ikf84z0yaqnk.png)
if the range is 30 the difference between 74 and greater number is 30
then
![\begin{gathered} b-74=30 \\ b=104 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/esqkrjkzpxapz7j5dzxo5jgso59flntjqq.png)
![\begin{gathered} 74 \\ 74 \\ 80 \\ a \\ 104 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2m0veki9nkmvc1p8ep7d5iyt30twn1zosg.png)
now we apply the mean to find a
we add all numbers and divide between 5 to obtain the mean(85)
![\begin{gathered} (74+74+80+104+a)/(5)=85 \\ \\ (332+a)/(5)=85 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/62b7sucj7uckxa9tnqxtvh7dtimecm9g6v.png)
and solve for a
![\begin{gathered} 332+a=85*5 \\ 332+a=425 \\ a=425-332 \\ a=93 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oeyqh1x3m3ji9p93iyt5v3ptv94m42hxzk.png)
Finall data is
![\begin{gathered} 74 \\ 74 \\ 80 \\ 93 \\ 104 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xf2sbsuv19jzfnqtqaa6sh8bguhkcpvo81.png)