In order to calculate the missing forces, we need to know that the net force is the sum of all forces in a direction.
For the first situation, the net force is zero, so the sum of forces in each direction is zero.
In the vertical direction, we have:
![\begin{gathered} F_(net)=B-200\\ \\ 0=B-200\\ \\ B=200\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9mmcovkv2r8qgvo99g3g55r4dpv0y56q8q.png)
In the horizontal direction:
![\begin{gathered} F_(net)=50-A\\ \\ 0=50-A\\ \\ A=50\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4n9zmgwt0kk6275tkbyd7ecl0w96i9zamp.png)
For the second situation, the net force is 900 N up.
In the vertical direction, we have:
![\begin{gathered} F_(net)=C-200\\ \\ 900=C-200\\ \\ C=1100\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/47754d7cyhvjbbvvsh10ujif7poojm43lk.png)
In the horizontal direction, we have no forces.
For the third situation, the net force is 60 N to the left.
In the vertical direction, we have:
![\begin{gathered} F_(net)=300-E\\ \\ 0=300-E\\ \\ E=300\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/smwr5x9qgjftanfc5sn6ydq6wcmhonjc4u.png)
In the horizontal direction, we have:
![\begin{gathered} F_(net)=D-80\\ \\ -60=D-80\\ \\ D=20\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/1d3y4ak1xhghb2a5wyn2xkz4v4wngyorje.png)
For the fourth situation, the net force is 30 N to the right.
In the vertical direction, we have:
![\begin{gathered} F_(net)=F-H\\ \\ 0=F-H\\ \\ F=H \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ryffic547gjwhh3fgmxr0dw5gmh47bw5n0.png)
In the horizontal direction, we have:
![\begin{gathered} F_(net)=G-20\\ \\ 30=G-20\\ \\ G=50\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/8y4hcql3uei7542348j85ochfk9n1p2znj.png)