we have the equation of curve C
![y=x^3-11x+1](https://img.qammunity.org/2023/formulas/mathematics/college/nefesms0mesy8nxg4057d4dozq61feyxce.png)
Part a
Find out the gradient, where x=3
To find the gradient, take the derivative of the function with respect to x, then substitute the x-coordinate of the point of interest for the x values in the derivative
so
the first derivative is equal to
![y^(\prime)=3x^2-11](https://img.qammunity.org/2023/formulas/mathematics/high-school/4as43vt729ko70p4bai0aeyzxj9cl1se30.png)
Evaluate the first derivative for x=3
![\begin{gathered} y^(\prime)=3(3^2)-11 \\ y^(\prime)=16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8aqlrabv5d16c381busdf84jo8bppg0p30.png)
the gradient is equal to 16
Part b
we know that the gradient is equal to 1 at point P
so
equate the first derivative to 1
![\begin{gathered} y^(\prime)=3x^2-11 \\ 3x^2-11=1 \\ 3x^2=12 \\ x^2=4 \\ x=\pm2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sjkkjfdgsb7m2evau58u0junno86ibf9a2.png)
Find out the possible y-coordinate of point P
For x=2
substitute in the given equation of C
![\begin{gathered} y=2^3-11(2)+1 \\ y=8-22+1 \\ y=-13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/63o040vwiabfxtj06svzsoqzanju91rgz2.png)
the first possible coordinate of P is (2,-13)
For x=-2
![\begin{gathered} y=-2^3-11(-2)+1 \\ y=-8+22+1 \\ y=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3ea3oahcd916hao9n1wdszuut02reys3fi.png)
the second possible coordinate of P is (-2,13)