359,265 views
28 votes
28 votes
Find the vertex of the parabola y = -5x² - 6x + 15/2

User Mythica
by
3.0k points

2 Answers

20 votes
20 votes


\\ \sf\longmapsto y=-5x^2-6x+15/2


\\ \sf\longmapsto -5x^2-6x-y+15/2=0

  • Multiply 2 with each term


\\ \sf\longmapsto -10x^2-12x-2y+15=0

  • Convert to vertex form


\\ \sf\longmapsto y=-5(x^2+(6)/(5)x+(9)/(25))+(93)/(10)


\\ \sf\longmapsto y=-5(x^2+2(3)/(5)x+((3)/(5))^2)+(93)/(10)


\\ \sf\longmapsto y=-5(x+(3)/(5))^2+(93)/(10)

Compare to vertex form of parabola


\boxed{\sf y=a(x-h)^2+k}

Now

  • h=-3/5
  • k=93/10
User Eunie
by
2.6k points
24 votes
24 votes

Answer:

  • (- 0.6, 9.3)

Explanation:

Given parabola:

  • y = -5x² - 6x + 15/2

The vertex is determined by x = - b/2a:

  • x = - (-6)/(2*(-5)) = -0.6

Find y- coordinate of vertex:

  • y = - 5(0.6)² - 6(- 0.6) + 15/2 = 9.3
User NGaffney
by
2.9k points