116k views
0 votes
Drag each tile to the correct box. Arrange these functions from the greatest to the least value based on the average rate of change in the specified interval. f(x) = x² + 3x interval: (-2, 3] f(x) = 3x - 8 interval: [4, 5] f(x) = x² - 2x interval: (-3,4) f(x) = x².5 interval: [-1.1)

1 Answer

1 vote

To find the average rate of change, use the formula:


A=(f(b)-f(a))/(b-a)


\begin{gathered} f(x)=x^2+3x \\ \end{gathered}

Interval, (a, b) = (-2, 3]

Let's find the average rate of change:


\begin{gathered} f(a)=f(-2)=-2^2+3(-2)=4\text{ - 6 = -2} \\ \\ f(b)=f(3)=3^2+3(3)=9+9=18 \end{gathered}

Average rate of change is:


A=(18-(-2))/(3-(-2))=(18+2)/(3+2)=(20)/(5)=4


f(x)=3x\text{ - 8}

Interval, (a, b) = [4,5]

Let's solve for f(a) and f(b):


\begin{gathered} f(a)=f(4)=3(4)-8=12-8=4 \\ \\ f(b)=f(5)=3(5)-8=15-8=7 \end{gathered}

Average rate of change =


A=(f(b)-f(a))/(b-a)=(7-4)/(5-4)=(3)/(1)=3


f\mleft(x\mright)=x^2-2x

interval, (a,b) = (-3, 4)

Solve for f(a) and f(b)


\begin{gathered} f(a)=f(-3)=-3^2-2(-3)=9+6=15 \\ \\ f(b)=f(4)=4^2-2(4)=16-8=8 \\ \\ A=(8-15)/(4-(-3))=(8-15)/(4+3)=(-7)/(7)=-1 \end{gathered}
f(x)=x^2(5)

interval, (a,b) =[-1, 1)


\begin{gathered} f(a)=f(-1)=-1^2(5)=5 \\ \\ f(b)=f(1)=1^2(5)=5 \\ \\ A=(5-5)/(1-(-1))=(0)/(2)=0 \end{gathered}

User Lachezar Raychev
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories