The equation:
![y^2+14y+49=0](https://img.qammunity.org/2023/formulas/mathematics/college/bicjamxydlezqhz6f4ujj4ftzv89bmcihh.png)
has the following values a=1, b=14 and c=49, hence the discriminant is:
![14^2-4(1)(49)=196-196=0](https://img.qammunity.org/2023/formulas/mathematics/college/9yka1dfl0f2ywu0ciblnxuvdromtv3isrx.png)
Since the discriminant is zero we have one solution of multiplicity 2 (this means we have one repeated solution)
Solving the quadratic equation with the general formula:
![\begin{gathered} y=\frac{-14\pm\sqrt[]{14^2-4(1)(49)}}{2(1)} \\ y=\frac{-14\pm\sqrt[]{0}}{2} \\ y=(-14)/(2) \\ y=-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5biocv1sbc4ikl9sk6y54yezcisrq091b3.png)
Therefore the solution is y=-7