We are given the following functions:
![\begin{gathered} f\mleft(x\mright)=x^2+2x \\ g\mleft(x\mright)=x+3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rbl5sekge1ljsqe0e4ltyvwols3b8uzdrj.png)
We are asked to determine the following composition:
![(f\circ g)(x)=f(g(x))](https://img.qammunity.org/2023/formulas/mathematics/college/qytlfzimoxtv7qpo9rm3ru8joolfgz0nxs.png)
This means that where we have "x" in f we will replace it for the function g, like this:
![f(g(x))=(x+3)^2+2(x+3)](https://img.qammunity.org/2023/formulas/mathematics/college/92yve3oum8yma8lhsdivlt6tm8vd6evnky.png)
Simplifying we get:
![\begin{gathered} f(g(x))=x^2+6x+9+2x+6 \\ f(g(x))=x^2+8x+15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uem2djswonbkkjw3ber9sy35j4jn5i1p04.png)
Now we are asked to determine the following composition:
![(g\circ f)(x)=g(f(x))](https://img.qammunity.org/2023/formulas/mathematics/college/8lu2o6klwimn8usrejj4tq4ax3gg3hc8p3.png)
This means that where there is "x" in g we will replace it by f:
![\begin{gathered} g(f(x))=(x^2+2x)+3 \\ g(f(x))=x^2+2x+3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zyipx0tlzv2m4dngoa6dy4bxerzzj868zn.png)
Now we are asked to determine:
![(f\circ f)(x)=f(f(x))](https://img.qammunity.org/2023/formulas/mathematics/college/78a5k54fb95y7odzyv4hx080vumjzyohpj.png)
Replacing the value of f in f:
![f(f(x))=(x^2+2x)^2+2(x^2+2x)](https://img.qammunity.org/2023/formulas/mathematics/college/lh5yux4ok8ywxw0cedyr1ncq1la6krvf0b.png)
Simplifying:
![\begin{gathered} f(f(x))=x^4+4x^3+4x^2+2x^2+4x \\ f(f(x))=x^4+4x^3+6x^2+4x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xiuprvryj1wsgmyyipandyyh5vju9lw9nz.png)
Finally, we are asked to determine the following composition:
![(g\circ g)(x)=g(g(x))](https://img.qammunity.org/2023/formulas/mathematics/college/u7h2oqmjkmrzlm1r5hi49unzqul74amz0d.png)
Replacing we get:
![\begin{gathered} g(g(x))=(x+3)+3 \\ g(g(x))=x+6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ylrrq25fhyh02sdgj0lfe3ip677n79ybrr.png)