201k views
3 votes
A ball is dropped from a tower. The table shows the heights of the ball's bounces, which form a geometric sequence. Describe in words how you would find the height of the next bounce?

A ball is dropped from a tower. The table shows the heights of the ball's bounces-example-1
User BHC
by
8.7k points

1 Answer

3 votes

to find the height of the next bounce, just replace the x value in the function


f(x)=36x^2-228x+392

the heigth of next bounce is 56 ft}

Step-by-step explanation

Step 1

find the equation of the quadratic function, so

i) set the equations

a quadratic function is in the form


f(x)=ax^2+bx+c

so, we can replace the known coordinates for find a, b and c

so

a)


\begin{gathered} f(x)=ax^2+bx+c \\ a)(1,200),\text{ so} \\ 200=a(1)^2+b(1)+c \\ 200=a+b+c\rightarrow equation(1) \end{gathered}

b)


\begin{gathered} f(x)=ax^2+bx+c \\ b)(2,80) \\ 80=a(2)^2+b(2)+c \\ 80=4a+2b+c\rightarrow equation(2) \end{gathered}

c)


\begin{gathered} f(x)=ax^2+bx+c \\ c)(3,32) \\ 32=a(3)^2+(3)x+c \\ 32=9a+3b+c\rightarrow equation\text{ (3)} \end{gathered}

Step 2

solve the equations


\begin{gathered} 200=a+b+c\rightarrow equation(1) \\ 80=4a+2b+c\rightarrow equation(2) \\ 32=9a+3b+c\rightarrow equation\text{ (3)} \end{gathered}

a) isolate x in equation (1) and (2) , then let c= c

so


\begin{gathered} 200=a+b+c\rightarrow equation(1) \\ c=200-a-b \\ and \\ 80=4a+2b+c\rightarrow equation(2) \\ c=80-4a-2b \\ c=c\text{ , so} \\ 200-a-b=80-4a-2b \\ 200-80=-4a-2b+a+b \\ 120=-3a-b\rightarrow equation(4) \end{gathered}

b)isolate x in equation (1) and (3) , then let c= c


\begin{gathered} 32=9a+3b+c \\ c=32-9a-3b \\ C=C,\text{ so} \\ 200-a-b=32-9a-3b \\ 300-32=-9a-3b+a+b \\ 168=-8a-2b\rightarrow equation(5) \end{gathered}

c) now, use equation (4) and equation(5) to find a and b


\begin{gathered} 120=-3a-b\rightarrow equation(4) \\ 168=-8a-2b\rightarrow equation(5) \end{gathered}

i)isolate b in both sides, then let b=b


\begin{gathered} 120=-3a-b\rightarrow equation(4) \\ b=-3a-120 \\ \text{and} \\ 168=-8a-2b\rightarrow equation(5) \\ 168+8a=-2b \\ b=(168+8a)/(-2) \\ b=-84-4a \\ B=B,\text{ so} \\ -3a-120=-84-4a \\ -3a+4a=-84+120 \\ a=36 \end{gathered}

replace to find b


\begin{gathered} b=-3a-120 \\ b=-3(36)-120 \\ b=-108-120=-228 \\ b=-228 \end{gathered}

finally, replacei n equation (1) to find c


\begin{gathered} 200=a+b+c\rightarrow equation(1) \\ 200=36-228+c \\ 200=192+c \\ 200+192=c \\ c=392 \end{gathered}

therefefore,


f(x)=36x^2-228x+392

Step 3

now, we have the function


f(x)=36x^2-228x+392

so

to find the height of the next bounce, just replace the x value in the function


f(x)=36x^2-228x+392

so, when bounce = 4,

let

x=4


\begin{gathered} f(x)=36x^2-228x+392 \\ f(4)=36(4)^2-228(4)+392 \\ f(4)=56 \end{gathered}

so, the heigth of next bounce is 56 ft

56 ft

I hope this helps you

User Ivan Tsirulev
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories