SOLUTION
Step 1: List out the given parameters.
![\begin{gathered} \text{Let the height be x} \\ \text{Base}=3x+1 \\ A=40m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xoksn3ulk22yop9qvw9ycyz21po10bbmly.png)
Step 2: Write the formula for the area of the triangle and solve.
![\begin{gathered} A=(1)/(2)*\text{base x height} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4imdjlrxd4mgxgke3ohqyn6vm26bif0w6q.png)
Substitute the parameters in step 1 into the formula in step 2
![\begin{gathered} 40=(1)/(2)*(3x+1)* x \\ 80=3x^2+x \\ 3x^2+x-80=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d220myk3h6w8kdlsouruevzlwg3ja4pe8m.png)
Solving the above quadratic equation by quadratic formula method, we will get:
![x=5\text{ and x=}(-16)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/etqs8qr688iztchtbbeo40zsnd5qa6c5zu.png)
Since the value for a side of a triangle cannot be negative, x=5 is the only value of x we can use.
Therefore:
![\begin{gathered} \text{height}=x=5m \\ \text{Base}=(3x+1)=(3(5)+1)=(15+1)=16m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8axzdqqk82byalu2ehbq8cr6erz3xyd9zg.png)
So we can conclude that:
The base is 16 meters and the height is 5 meters.