For this exercise it is important to remember the de sum of the interior angles of a triangle is 180 degrees.
For this case, you have the triangle ABC, and according to the information given in the exercise:
![\begin{gathered} \angle A=3x-15 \\ \angle B=x+5 \\ \angle C=x-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/34ztsqhrcskfmow3sts3m6ffoy43e9sltr.png)
Knowing the above, you can set up the following equation:
![(3x-15)+(x+5)+(x-10)=180](https://img.qammunity.org/2023/formulas/mathematics/college/w1uwlxje2e7ukplp75x174n250ohhnrewu.png)
Now you must solve for "x":
![\begin{gathered} 3x-15+x+5+x-10=180 \\ 5x-20=180 \\ 5x=180+20 \\ 5x=200 \\ \\ x=(200)/(5) \\ \\ x=40 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nbbclljo4cw3des7ebn1vrkg9r98y5g409.png)
Now, substitute the value of "x" into this equation:
![\angle A=3x-15](https://img.qammunity.org/2023/formulas/mathematics/college/6x5ufjrahitn9x7uusf1riagy29turai0k.png)
Evaluating, you get that the measure of the angle A is:
![\angle A=3(40)-15=105\degree](https://img.qammunity.org/2023/formulas/mathematics/college/8xgxpuytkz2411ezvyax9ykci50y8j9ygv.png)
The answer is:
![\angle A=105\degree](https://img.qammunity.org/2023/formulas/mathematics/college/mfp7638ngmfnj19z5uop6qjhnw36drqzc0.png)