154k views
1 vote
13 units find area of sector GHJ. In circle H with m/GHJ 36 and GH Round to the nearest hundredth. H G

1 Answer

3 votes


\text{Area}_(cir\sec )=53.09\text{ square units}

Step-by-step explanation

The area of a circular sector is given by:


\text{Area}_(cir\sec )=\pi r^2\cdot((\Theta)/(360))

where r is the radius and theta is the angle

then

Let

angle=36

radius=13

now ,replace.


\begin{gathered} \text{Area}_(cir\sec )=\pi r^2\cdot((\Theta)/(360)) \\ \text{Area}_(cir\sec )=\pi(13)^2\cdot((36)/(360)) \\ \text{Area}_(cir\sec )=\pi\cdot169\cdot((36)/(360)) \\ \text{Area}_(cir\sec )=53.0929 \\ \text{rounded} \\ \text{Area}_(cir\sec )=53.09\text{ square units} \end{gathered}

I hope this helps you

13 units find area of sector GHJ. In circle H with m/GHJ 36 and GH Round to the nearest-example-1
User Derek Corcoran
by
3.0k points