15.4k views
4 votes
at the end of the holiday season in January, the sales at a department store are expected to fall. It was initially estimated that for the x day of January, The sales will be s(x). The financial analysis at the store correct other projection and are not expecting the total sales for the X day of January to be t(x)T(1)=

at the end of the holiday season in January, the sales at a department store are expected-example-1
User Amber
by
8.4k points

1 Answer

2 votes

\begin{gathered} T(x)=(13)/(5)+(32)/(5(3x+1)^2) \\ T(1)=\text{ }(13)/(5)+\text{ }(32)/(5(3(1)+1)^2) \\ T(1)=(13)/(5)+(32)/(5(4)^2) \\ T(1)=(13)/(5)+(32)/(5(16)) \\ T(1)=(13)/(5)+(2)/(5) \\ T(1)=(15)/(5)=3 \\ \end{gathered}
\begin{gathered} T^(\prime)(x)=\frac{\text{ 13}}{5}+(32)/(5(3x+1)) \\ T^(\prime)(x)=\text{ }(dt(x))/(dx)((13)/(5))+(dt(x))/(dx)((32)/(5(3x+1)) \\ T^(\prime)(x)=0+(\text{ -32\rparen\lparen}((dt(x))/(dx)5(3x+1)^2)/((dt(x))/(dx)(5(3x+1)^2)^2) \\ T^(\prime)(x)=0\text{ - 32\lparen}(5((dt(x))/(dx)(3x+1)^2))/((5(3x+1)^2)^2) \\ T^(\prime)(x)=0\text{ -32\lparen}(5((dt)/(dx)(g)^2)((dt)/(dx)(3x+1))/((5(3x+1)^2)^2) \\ T^(\prime)(x)=0\text{ -32\lparen}(5(2g)(3))/((5(3x+1)^2)^2) \\ T^(\prime)(x)=0\text{ - 32\lparen}^(5(2)(3x+1)(3))/((5(3x+1)^2)^2) \\ T^(\prime)(x)=0\text{ -32\lparen}\frac{5\text{ x \lparen}2)(3x+1)(3)}{25(3x+1)^4} \\ T^(\prime)(x)=0\text{ - 32\lparen}(2(3))/(5(3x+1)^3)) \\ T^(\prime)(x)=0\text{ - 32\lparen}(6)/(5(3x+1)^3)) \\ T^(\prime)(x)=\text{ - }(192)/(5(3x+1)^3) \\ T^(\prime)(1)=\text{ - }(192)/(5(3(1)+1)^3) \\ T^(\prime)(1)=\text{ - }(192)/(5(4)^3) \\ T^(\prime)(1)=\text{ - }(192)/(320) \\ T^(\prime)(1)=\frac{\text{ - 3}}{5} \end{gathered}

User Nathan Rivera
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories