
we can use the equation to factor
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
where a=6 , b=k and c=6
replacing
![\begin{gathered} x=\frac{-k\pm\sqrt[]{k^2-4(6)(6)}}{2(6)} \\ \\ x=\frac{-k\pm\sqrt[]{k^2-4(6)(6)}}{2(6)} \\ \\ x=\frac{-k\pm\sqrt[]{k^2-144}}{12} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s3xdimcwsmj09xo3pfppql00q55m9o1lnn.png)
to have a real solution we need the interior of the root to be greater than or equal to 0
so
![\begin{gathered} k^2-144\ge0 \\ k^2\ge144 \\ k\ge\pm\sqrt[]{144} \\ k\le-12ork\ge12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xx8u7yn58dejbr4niiau23jurae49ta6uq.png)
The solution is option B
k can take any value in the interval K<-12 or in the interval k>12