We want to simplify

When we exponentiate a number by a fraction, we exponentiate the number by the numerator, and the denominator is the radical of the root. Since our denominator is 2, we have a square root.
![(-64)^{(3)/(2)}=\sqrt[]{(-64)^3}](https://img.qammunity.org/2023/formulas/mathematics/college/kinfw7c25tck73hsy97sbvmd4rnhppts4a.png)
Expanding this expression, we have
![\begin{gathered} \sqrt[]{(-64)^3}=\sqrt[]{(-1)^3(64)^3} \\ =\sqrt[]{(-1)^{}(64)^2(64)} \\ =64\sqrt[]{(-1)(64)} \\ =64\sqrt[]{(-1)(8)^2} \\ =64\cdot8\sqrt[]{(-1)^{}} \\ =512\sqrt[]{-1^{}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fag7t0mwnnxbfelvjsagzrasddi5823yrt.png)
The square root of minus one is also know as the imaginary number.
![512\sqrt[]{-1^{}}=512i](https://img.qammunity.org/2023/formulas/mathematics/college/h7aq9m1utwdjab94h2d4cfbo952kahkxtp.png)