Hello!
Let's write some important information contained in the exercise:
Were sold 800 tickets
• cheap + expensive = 800
The price of each ticket was:
• cheap: SEK 90
,
• expensive: SEK 120
The total ticket revenue was SEK 85,500.
Note: let's use 'c' for cheap and 'e' for expensive.
Knowing it, we can write it as a linear system look:
![\begin{gathered} \\ \begin{cases}\mathrm{c+e=800}{} \\ \mathrm{90c+120e=85,500}\end{cases} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3293qi609ubowhpve08bsmhk6pefma8cn0.png)
Let's rewrite the first equation as:
![\boxed{\mathrm{c=800-e}}](https://img.qammunity.org/2023/formulas/mathematics/college/2q1711lx67betpj1shnc1p15ioeh1k55s0.png)
Now, let's replace the value of c in the second equation:
![\begin{gathered} \mathrm{90c+120e=85,500} \\ \mathrm{90}\cdot(\mathrm{800-e})\mathrm{+120e=85,500} \\ 72,000-90e+120e=85,500 \\ 72,000+30e=85,500 \\ 30e=85,500-72,000 \\ 30e=13,500 \\ \\ e=(13,500)/(30) \\ \\ \boxed{\mathrm{e=450}\text{ }\mathrm{expensive}\text{ }\mathrm{tickets}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dvwfmqdfhgbwm4yvxb53u5ljzmcsikj4ea.png)
Now that we know the number of expensive tickets sold, let's find the number of cheap tickets using equation 1 again:
![\begin{gathered} \mathrm{c+e=800} \\ \mathrm{c+}450\mathrm{=800} \\ \mathrm{c=800-450} \\ \boxed{\mathrm{c=}3\mathrm{50}\text{ }\mathrm{cheap}\text{ }\mathrm{tickets}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3ipxtbauk49c38ok60b2gyguf5hrfr19i5.png)
Answer:
There were sold:
• 350 cheap tickets.
,
• 450 expensive tickets.